Multivariable matrix generalization of Gould-Hopper polynomials

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-variable Gould-Hopper and Laguerre polynomials

The idea of monomiality traces back to the early forties of the last century, when J.F. Steffensen, in a largely unnoticed paper [1], suggested the concept of poweroid. A new interest in this subject was created by the work of G. Dattoli and his collaborators [2], [3] It turns out that all polynomial families, and in particular all special polynomials, are essentially the same, since it is poss...

متن کامل

On an Hypercomplex Generalization of Gould-Hopper and Related Chebyshev Polynomials

An operational approach introduced by Gould and Hopper to the construction of generalized Hermite polynomials is followed in the hypercomplex context to build multidimensional generalized Hermite polynomials by the consideration of an appropriate basic set of monogenic polynomials. Directly related functions, like Chebyshev polynomials of first and second kind are constructed.

متن کامل

Multivariable Construction of Extended Jacobi Matrix Polynomials

The main aim of this paper is to construct a multivariable extension with the help of the extended Jacobi matrix polynomials (EJMPs). Generating matrix functions and recurrence relations satisfied by these multivariable matrix polynomials are derived. Furthermore, general families of multilinear and multilateral generating matrix functions are obtained and their applications are presented.

متن کامل

The Matrix Version for the Multivariable Humbert Polynomials

In this paper, the matrix extension of the multivariable Humbert polynomials is introduced. Various families of linear, multilinear and multilateral generating matrix functions of these matrix polynomials are presented. Miscellaneous applications are also discussed. 2000 Mathematics Subject Classification: 33C25; 15A60

متن کامل

Squarefree Values of Multivariable Polynomials

Given f ∈ Z[x1, . . . , xn], we compute the density of x ∈ Z such that f(x) is squarefree, assuming the abc conjecture. Given f, g ∈ Z[x1, . . . , xn], we compute unconditionally the density of x ∈ Z such that gcd(f(x), g(x)) = 1. Function field analogues of both results are proved unconditionally. Finally, assuming the abc conjecture, given f ∈ Z[x], we estimate the size of the image of f({1, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Miskolc Mathematical Notes

سال: 2015

ISSN: 1787-2405,1787-2413

DOI: 10.18514/mmn.2015.1112